Services Data Engineering
Our Data Engineering practice is responsible for establishing the data storage and data integration layers of a unified data platform that enables responding to complex questions, populating reports and discovering dependencies between originally independent data.
We design and implement the full process of ELT/ETL and data update including the necessary data model according to your business and analytics requirements. We have built several applications and blueprints to facilitate infrastructure implementation, data integration, algorithmic data processing, and configuration both in the cloud and in an on-premise environment.
Both relational and non-relational data, as well as IoT data from Point of Care sensors and file-based local registers from any kind of data source, are integrated into a central datalake allowing the storage of all of your data assets in a modern centrally managed data platform.
The aim of the InnoHealth Datalake project is to develop and implement the concept of a novel complex IT system capable of collecting, storing, and analyzing all types of health data generated in healthcare activities and services at the University of Pécs, together with all relevant external data. It also serves as a prototype for domestic and regional healthcare systems.
The Datalake’s principal capabilities were identified according to current and future needs of healthcare including data collection (independent of size, type, and source of data), data storage, and data analyses by state-of-the-art analytical methods and tools supporting healthcare services and R&D&I activities.